
  

First-Order Logic
Part One



  

Recap from Last Time



  

Recap So Far

● A propositional variable is a variable
that is either true or false.

● The propositional connectives are as
follows:

● Negation (“not”): ¬p
● Conjunction (“and”): p ∧ q
● Disjunction (“or”): p ∨ q
● Truth (“true”): ⊤
● Falsity (“false”): ⊥
● Implication (“implies”): p → q
● Biconditional (“if and only if”): p ↔ q



  

What's the truth table for the → connective?
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What's the negation of p → q?
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Operator Precedence

● How do we parse this statement?

¬x → y ∨ z → x ∨ y ∧ z

● Operator precedence for propositional logic:

¬   

∧   

∨   

→   

↔   
● All operators are right-associative.

● We can use parentheses to disambiguate.
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Operator Precedence

● How do we parse this statement?
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Operator Precedence

● How do we parse this statement?
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Operator Precedence

● How do we parse this statement?

(¬x) → ((y ∨ z) → (x ∨ (y ∧ z)))
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Operator Precedence

● The main points to remember:
● ¬ binds to whatever immediately follows it.
● ∧ and ∨ bind more tightly than →.

● We will commonly write expressions like
p ∧ q → r without adding parentheses.

● For more complex expressions, we'll try
to add parentheses.

● Confused? Please ask!



  

Logic at the US Supreme Court

● There was a case before the US Supreme Court
last year concerning whether a piece of text in a
law should be interpreted as

¬(A ∧ B ∧ C)

or as

¬A ∧ ¬B ∧ ¬C.

● You can listen to the oral arguments on the
Supreme Court’s website. They regularly throw
around terms like “conjunction,” “disjunction,” and
“distributive.”

https://www.supremecourt.gov/oral_arguments/audio/2023/22-340


  

New Stuf!



  

First-Order Logic



  

What is First-Order Logic?

● First-order logic is a logical system for
reasoning about properties of objects.

● Augments the logical connectives from
propositional logic with
● predicates that describe properties of

objects,
● functions that map objects to one another,

and
● quantifers that allow us to reason about

multiple objects.



  

Some Examples



  

Likes(You, Eggs) ∧ Likes(You, Tomato) → Likes(You, Shakshuka)

Learns(You, History) ∨ ForeverRepeats(You, History)

DrinksTooMuch(Me) ∧ IsAnIssue(That) ∧ IsOkay(Me)



  

Likes(You, Eggs) ∧ Likes(You, Tomato) → Likes(You, Shakshuka)

Learns(You, History) ∨ ForeverRepeats(You, History)

In(MyHeart, Havana) ∧ TookBackTo(Him, Me, EastAtlanta)
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These blue terms are called
constant symbols. Unlike
propositional variables, they

refer to objects, not
propositions.
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connectives. Because each predicate
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connect the truth values of predicates
using normal propositional connectives.
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Reasoning about Objects

● To reason about objects, frst-order logic uses
predicates.

● Examples:

Cute(Quokka)    

Rivals(Stanford, Berkeley)  
● Applying a predicate to arguments produces a

proposition, which is either true or false.

● Typically, when you’re working in FOL, you’ll have
a list of predicates, what they stand for, and how
many arguments they take. It’ll be given
separately than the formulas you write.



  

First-Order Formulas

● Formulas in frst-order logic can be
constructed from predicates applied to objects:

Cute(a) → Dikdik(a) ∨ Kitty(a) ∨ Puppy(a)

Succeeds(You) ↔ Practices(You)

x < 8 → x < 137

The less-than sign is
just another predicate.
Binary predicates are
sometimes written in 

infx notation this way.

The less-than sign is
just another predicate.
Binary predicates are
sometimes written in 

infx notation this way.

Numbers are not “built
in” to first-order

logic. They’re constant
symbols just like “You”

and “a” above.

Numbers are not “built
in” to first-order

logic. They’re constant
symbols just like “You”

and “a” above.



  

Equality

● First-order logic is equipped with a special
predicate = that says whether two objects are
equal to one another.

● Equality is a part of frst-order logic, just as → and
¬ are.

● Examples:

TomMarvoloRiddle = LordVoldemort

MorningStar = EveningStar

● Equality can only be applied to objects; to state
that two propositions are equal, use ↔.



  

Let's see some more examples.



  

FavoriteMovieOf(You) ≠ FavoriteMovieOf(Date) ∧
StarOf(FavoriteMovieOf(You)) = StarOf(FavoriteMovieOf(Date))
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Functions

● First-order logic allows functions that return
objects associated with other objects.

● Examples:

ColorOf(Money)

MedianOf(x, y, z)

x + y

● As with predicates, functions can take in any
number of arguments, but always return a single
value.

● Functions evaluate to objects, not propositions.



  

Objects and Propositions

● When working in frst-order logic, be
careful to keep objects (actual things)
and propositions (true or false) separate.

● You cannot apply connectives to objects:

⚠                  Venus → TheSun                ⚠
 

● You cannot apply functions to
propositions:

⚠  StarOf(IsRed(Sun) ∧ IsGreen(Mars)) ⚠
● Ever get confused? Just ask! 



  

The Type-Checking Table

… operate on ... … and produce

Connectives
(↔, ∧, etc.) …

Predicates
(=, etc.) …

Functions …

propositions a proposition

a propositionobjects

objects an object



  

One last (and major) change



  

Some muggle is intelligent.



  

Some muggle is intelligent.

∃m. (Muggle(m) ∧ Intelligent(m))



  

∃  is the existential quantifer 
and says “for some choice of
m, the following is true.”
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The Existential Quantifer

● A statement of the form

∃x. some-formula

is true if there exists a choice of x where
some-formula is true when that x is
plugged into it.

● Examples:

∃x. (Even(x) ∧ Prime(x))

∃x. (TallerThan(x, me) ∧ WeighsLessThan(x,
me))

(∃w. Will(w)) → (∃x. Way(x))



  

The Existential Quantifer

∃x. Smiling(x)
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The Existential Quantifer

∃x. Smiling(x)

Since Smiling(x)
is true for some
choice of x, this

statement
evaluates to true.

Since Smiling(x)
is true for some
choice of x, this

statement
evaluates to true.
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The Existential Quantifer

∃x. Smiling(x)

Since Smiling(x) is
not true for any
choice of x, this

statement evaluates
to false.
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choice of x, this

statement evaluates
to false.
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The Existential Quantifer

(∃x. Smiling(x)) → (∃y. WearingHat(y))

Go to
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The Existential Quantifer

(∃x. Smiling(x)) → (∃y. WearingHat(y))



 

The Existential Quantifer

(∃x. Smiling(x)) → (∃y. WearingHat(y))

Is this part of the
statement true or

false?
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The Existential Quantifer
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  ∃x. Smiling(x)

Fun with Edge Cases



  ∃x. Smiling(x)

Fun with Edge Cases

Existentially-quantifed
statements are false in an

empty world, since nothing
exists, period!

Existentially-quantifed
statements are false in an

empty world, since nothing
exists, period!



  

Some Technical Details



  

Variables and Quantifers

● Each quantifer has two parts:
● the variable that is introduced, and
● the statement that's being quantifed.

● The variable introduced is scoped just to
the statement being quantifed.

(∃x. Loves(You, x)) ∧ (∃y. Loves(y, You))
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just lives here.

The variable y 
just lives here.
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● Each quantifer has two parts:
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● the statement that's being quantifed.

● The variable introduced is scoped just to
the statement being quantifed.
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Variables and Quantifers

● Each quantifer has two parts:
● the variable that is introduced, and
● the statement that's being quantifed.

● The variable introduced is scoped just to
the statement being quantifed.

(∃x. Loves(You, x)) ∧ (∃x. Loves(x, You))

The variable x 
just lives here.

The variable x 
just lives here.

A different variable,
also named x, just

lives here.

A different variable,
also named x, just

lives here.



  

Operator Precedence (Again)

● When writing out a formula in frst-order logic,
quantifers have precedence just below ¬.

● The statement

∃x. P(x) ∧ R(x) ∧ Q(x)

is parsed like this:

⚠         (∃x. P(x))  ∧  (R(x) ∧ Q(x))        ⚠
● This is syntactically invalid because the variable x is

out of scope in the back half of the formula.

● To ensure that x is properly quantifed, explicitly put
parentheses around the region you want to quantify:

∃x. (P(x) ∧ R(x) ∧ Q(x))



  

“For any natural number n,
n is even if and only if n2 is even”

∀n. (n ∈ ℕ → (Even(n) ↔ Even(n2))) 
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the following is true.”
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The Universal Quantifer

● A statement of the form

∀x. some-formula

is true if, for every choice of x, the statement
some-formula is true when x is plugged into it.

● Examples:

∀p. (Puppy(p) → Cute(p))

∀a. (EatsPlants(a) ∨ EatsAnimals(a))

Tallest(SultanKösen) →
∀x. (SultanKösen ≠ x → ShorterThan(x,

SultanKösen))



  

The Universal Quantifer

∀x. Smiling(x)
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The Universal Quantifer

∀x. Smiling(x)

Since Smiling(x)
is true for every
choice of x, this

statement
evaluates to true.

Since Smiling(x)
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choice of x, this

statement
evaluates to true.
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The Universal Quantifer

∀x. Smiling(x)



  

The Universal Quantifer

∀x. Smiling(x)

Since Smiling(x) is
false for this choice

x, this statement
evaluates to false.

Since Smiling(x) is
false for this choice

x, this statement
evaluates to false.



  

The Universal Quantifer

∀x. Smiling(x)

Since Smiling(x) is
false for this choice

x, this statement
evaluates to false.

Since Smiling(x) is
false for this choice

x, this statement
evaluates to false.



  

The Universal Quantifer

(∀x. Smiling(x)) → (∀y. WearingHat(y))
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The Universal Quantifer

(∀x. Smiling(x)) → (∀y. WearingHat(y))

Is this overall
statement true or

false in this
scenario?
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(∀x. Smiling(x)) → (∀y. WearingHat(y))

Is this overall
statement true or
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Is this overall
statement true or

false in this
scenario?
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Fun with Edge Cases



  ∀x. Smiling(x)

Fun with Edge Cases

Universally-quantifed
statements are said to be
vacuously true in empty

worlds.

Universally-quantifed
statements are said to be
vacuously true in empty

worlds.



  

Translating into First-Order Logic



  

Translating Into Logic

● First-order logic is an excellent tool for
manipulating defnitions and theorems to learn
more about them.

● Need to take a negation? Translate your
statement into FOL, negate it, then translate it
back.

● Want to prove something by contrapositive?
Translate your implication into FOL, take the
contrapositive, then translate it back.



  

Translating Into Logic

● When translating from English into frst-
order logic, we recommend that you

think of frst-order logic as a
mathematical programming

language.
● Your goal is to learn how to combine

basic concepts (quantifers, connectives,
etc.) together in ways that say what you
mean.



  

Using the predicates

   - Smiling(x), which states that x is smiling, and
   - WearingHat(x), which states that x is wearing a hat,

write a sentence in frst-order logic that says

some smiling person wears a hat.
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∃x. (Smiling(x) ∧ WearingHat(x))

∃x. (Smiling(x) → WearingHat(x))

“Some smiling person wears a hat.”
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“Some smiling person wears a hat.”
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“Some smiling person wears a hat.”



  

∃x. (Smiling(x) ∧ WearingHat(x))

∃x. (Smiling(x) → WearingHat(x))

“Some smiling person wears a hat.” False
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“Some smiling person wears a hat.” False



  

∃x. (Smiling(x) ∧ WearingHat(x))

∃x. (Smiling(x) → WearingHat(x))

“Some smiling person wears a hat.” False

False



  

∃x. (Smiling(x) ∧ WearingHat(x))

∃x. (Smiling(x) → WearingHat(x))

“Some smiling person wears a hat.” False

False

True



  

∃x. (Smiling(x) ∧ WearingHat(x))

∃x. (Smiling(x) → WearingHat(x))

“Some smiling person wears a hat.” False

False

True



  

∃x. (Smiling(x) ∧ WearingHat(x))

∃x. (Smiling(x) → WearingHat(x))

“Some smiling person wears a hat.” False

False

True



  

“Some P is a Q”

translates as

∃x. (P(x) ∧ Q(x))



  

Useful Intuition: 
  

Existentially-quantifed statements are
false unless there's a positive example.

∃x. (P(x) ∧ Q(x))

If x is an example, it must 
have property P on top of

property Q.

If x is an example, it must 
have property P on top of

property Q.



  

Using the predicates

   - Smiling(x), which states that x is smiling, and
   - WearingHat(x), which states that x is wearing a hat,

write a sentence in frst-order logic that says

every smiling person wears a hat.

Go to
PollEv.com/cs103spr25

Go to
PollEv.com/cs103spr25



  

∀x. (Smiling(x) ∧ WearingHat(x))

∀x. (Smiling(x) → WearingHat(x))

“Every smiling person wears a hat.”



  

∀x. (Smiling(x) ∧ WearingHat(x))

∀x. (Smiling(x) → WearingHat(x))

“Every smiling person wears a hat.”



  

∀x. (Smiling(x) ∧ WearingHat(x))

∀x. (Smiling(x) → WearingHat(x))

“Every smiling person wears a hat.” True



  

∀x. (Smiling(x) ∧ WearingHat(x))

∀x. (Smiling(x) → WearingHat(x))

“Every smiling person wears a hat.” True

False



  

∀x. (Smiling(x) ∧ WearingHat(x))

∀x. (Smiling(x) → WearingHat(x))

“Every smiling person wears a hat.” True

False

True



  

∀x. (Smiling(x) ∧ WearingHat(x))

∀x. (Smiling(x) → WearingHat(x))

“Every smiling person wears a hat.” True

False

True



  

∀x. (Smiling(x) ∧ WearingHat(x))

∀x. (Smiling(x) → WearingHat(x))

“Every smiling person wears a hat.” True

False

True



  

“All P's are Q's”

translates as

∀x. (P(x) → Q(x))



  

Useful Intuition:
 

Universally-quantifed statements are true
unless there's a counterexample.

∀x. (P(x) → Q(x))

If x is a counterexample, it
must have property P but

not have property Q.

If x is a counterexample, it
must have property P but

not have property Q.



  

Good Pairings

● The ∀ quantifer usually is paired with →.

∀x. (P(x) → Q(x))

● The ∃ quantifer usually is paired with ∧.

∃x. (P(x) ∧ Q(x))

● In the case of ∀, the → connective prevents the
statement from being false when speaking about
some object you don't care about.

● In the case of ∃, the ∧ connective prevents the
statement from being true when speaking about
some object you don't care about.



  

Next Time

● First-Order Translations

● How do we translate from English into frst-order
logic?

● Quantifer Orderings

● How do you select the order of quantifers in frst-
order logic formulas?

● Negating Formulas

● How do you mechanically determine the negation of
a frst-order formula?

● Expressing Uniqueness

● How do we say there’s just one object of a certain
type?


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140

